Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Implant Dent ; 10(1): 11, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472687

RESUMO

OBJECTIVE: This study analyzed and compared the biomechanical properties of maxillary sinus floor mucosa with implants at three different maxillary sinus angles during a modified internal sinus floor elevation procedure. METHODS: 3D reconstruction of the implant, maxillary sinus bone, and membrane were performed. The maxillary sinus model was set at three different angles. Two internal maxillary sinus elevation models were established, and finite element analysis was used to simulate the modified maxillary sinus elevation process. The implant was elevated to 10 mm at three maxillary sinus angles when the maxillary sinus floor membrane was separated by 0 and 4 mm. The stress of the maxillary sinus floor membrane was analyzed and compared. RESULTS: When the maxillary sinus floor membrane was separated by 0 mm and elevated to 10 mm, the peak stress values of the implant on the maxillary sinus floor membrane at three different angles were as follows: maxillary sinus I: 5.14-78.32 MPa; maxillary sinus II: 2.81-73.89 MPa; and maxillary sinus III: 2.82-51.87 MPa. When the maxillary sinus floor membrane was separated by 4 mm and elevated to 10 mm, the corresponding values were as follows: maxillary sinus I: 0.50-7.25 MPa; maxillary sinus II: 0.81-16.55 MPa; and maxillary sinus III: 0.49-22.74 MPa. CONCLUSION: The risk of sinus floor membrane rupture is greatly reduced after adequate dissection of the maxillary sinus floor membrane when performing modified internal sinus elevation in a narrow maxillary sinus. In a wide maxillary sinus, the risk of rupture or perforation of the wider maxillary sinus floor is reduced, regardless of whether traditional or modified internal sinus elevation is performed at the same height.


Assuntos
Implantes Dentários , Levantamento do Assoalho do Seio Maxilar , Implantação Dentária Endóssea/métodos , Levantamento do Assoalho do Seio Maxilar/métodos , Seio Maxilar/cirurgia , Membranas/cirurgia
2.
Oral Dis ; 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37551796

RESUMO

OBJECTIVE: The aim of this study was to investigate the effect of IL-10 on the phenotype polarization of macrophages and osteogenesis in diabetes mellitus type 2 (T2DM) rat jaw defects. METHODS: Lipopolysaccharide (LPS) and interleukin-10 (IL-10) were chosen to induce the polarization of macrophages. In vitro assessment included wound-healing assay, western blotting, and alizarin red staining after co-culture of the bone marrow-derived mesenchymal stem cells (BMSCs) and induced macrophages. For in vivo study, IL-10 was loaded on GelMA-Heparin and applied to bone defects of the alveolar ridge in diabetic rats, while Bio-Oss Collagen, simple GelMA-Heparin, and blank control groups were set for contrast experiment. The mandibles of rats were processed for micro-computed tomography, histology, and immunohistochemistry 1 week and 4 weeks after the operation. RESULTS: IL-10 induced expression of arginase 1, TGF-ß1, EGR2, and Mannose Receptor (CD206), whereas LPS induced expression of iNOS, TNF-α, IL-6, CD80. The BMSCs co-cultured with macrophages induced by IL-10 showed increased migration, osteogenic differentiation, and mineralization in vitro. Notably, the IL-10-laden GelMA-Heparin group showed quicker new bone formation and a higher M2/M1 ratio of macrophages in the jawbone defect area compared with the control groups. CONCLUSIONS: IL-10 can stably induce macrophages to M2 type, thereby influencing BMSCs and improving the osteogenesis of jaw bone defects.

3.
Molecules ; 26(11)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070610

RESUMO

As a significant co-activator involved in cell cycle and cell growth, differentiation and development, p300/CBP has shown extraordinary potential target in cancer therapy. Herein we designed new compounds from the lead compound A-485 based on molecular dynamic simulations. A series of new spirocyclic chroman derivatives was prepared, characterized and proven to be a potential treatment of prostate cancer. The most potent compound B16 inhibited the proliferation of enzalutamide-resistant 22Rv1 cells with an IC50 value of 96 nM. Furthermore, compounds B16-P2 displayed favorable overall pharmacokinetic profiles, and better tumor growth inhibition than A-485 in an in vivo xenograft model.


Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Cromanos/química , Neoplasias da Próstata/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Cromanos/farmacologia , Xenoenxertos , Humanos , Concentração Inibidora 50 , Masculino , Simulação de Acoplamento Molecular , Neoplasias da Próstata/patologia , Análise Espectral/métodos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...